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Abstract. Using the formalism of continuous-time random walks (c  TRW) we discuss particle 
diffusion on  ultrametric spaces (UMS). For broad waiting t ime distributions $ ( t )  - 
the temporal ( a  ) and  the energetic ( y )  parameters combine multiplicatively (subordinate):  
i.e. S (  0, the mean number of UMS sites visited, follows a S (  r )  - I"? law. This mirrors ou r  
previous findings for CTRW on fractals. 

1. Introduction 

Recently, much interest has centred on ultrametric spaces UMS [l-61 as a means to 
model the energetic disorder found in amorphous media [7]. Thus the U M S  complement 
the panoply of models for spatial randomness (geometric fractals) and  for temporal 
disorder (continuous-time random walks-Cmw, multiple trapping-M-r) and allow 
us to treat energetic randomness in systematic fashion. This paper deals with regularly 
multifurcating trees; one example is shown in figure 1. The point at the top multifurcates 
in b branches (here b = 3) then every branch multifurcates again, and so on, until the 
baseline is reached. The points lying on this baseline form our UMS. Thus, in finite 
trees, the number N of points belonging to the UMS is given by N = b" where n is the 
number of branching levels. The distance between two levels is a measure for the 
energy required to reach one branch from the other one. Of special interest are trees 
where this distance is a constant, A, between all levels, and where the relaxation is 
thermally assisted. 

In  previous works [3-51 the connection between random walks on fractals and on 
U M S  has been drawn: to the spectral dimension d' for fractals [8,9] corresponds on 
regularly multifurcating U M S  the quantity 2 y, with 

Y 

where T is the 
subbranches. 

= ( k T / A )  In b (1) 

temperature, h is the regular energy spacing and b is the number of 

Figure 1. The  regularly multifurcating U M S ,  6 = 3. 
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CTRW on fractals shows subordination [lo]: for waiting time distributions with long 
tails 

$ ( t ) -  I / t l t a  t large (2) 

one finds for the mean number of distinct sites visited S ( t )  - tu"' ((U < 1, d < 2 ) ,  i.e. 
the exponents combine multiplicatively. Here we show that a similar situation occurs 
when one considers CTRW on UMS (and thus combines the temporal with the energetic 
facets of disorder). As a by-product of our analysis we obtain the exact closed-form 
generating function [ 11, 121 Po( z )  for random walks on regularly multifurcating UMS. 

From this quantity the mean number S, of distinct sites visited in n steps can be 
calculated exactly, as we proceed to show. The central input for our analysis is Po( t ) ,  
the probability of being at the origin of the walk at a later time t, a quantity which 
for regular U M S  was determined exactly [2,6]. 

The main concern of this paper is the CTRW aspect and the interplay between CTRW 

and RW in discrete time; thus we first give a summary of R W  and CTRW properties 
essential for us. 

2. Connection between R W  in discrete time and CTRW 

Let us recall the basic idea [l l-131 of the connection between R W  and CTRW. We 
exemplify i t  using Po,n, the probability of being at the origin at the nth step. Let cp,(t) 
be the probability of having performed exactly n steps in time t. Then 

The pn( t j may now be expressed through $( t j, the waiting time distribution between 
steps. Se t t i ng f (u )=  = Y ( f ( t ) )  where 9 is the Laplace transform, one has [12]: 

= (1  - c L ( u j ) ( $ , ( u j ) n / u .  (4) 
Therefore: 

which, apart from the factor ( 1  - +(U))/ u is nothing else but the generating function 
O f  the f ( J , n  

evaluated at z = $( u j [ 113. Hence, one may switch from Po., to P ( 2 )  to Po( t )  if only 
one of them is known. Furthermore, the same is true for S,,, S ( z )  and S ( t ) .  The 
following relation connects all quantities: 

( 7 )  
Equation ( 7 )  holds for regular lattices [ l l ]  (but not, in general, for fractals). In  § 4 
we derive equation ( 7 )  for regular UMS.  

To close this section we mention that Poisson processes have exponentially dis- 
tributed sojourn times $( t )  = A expi-At), from which 

$(U) = A / ( u  + A )  - 1 - u/A (8) 

S ( z )  = l / [ (  1 - - z ) 2 P ( z ) ] .  
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follows, whereas long-time tails such as +( 1 )  - t - ’ -a  (0 < cy < 1) lead to the following 
small-u expansion in the Laplace domain [ 12, 131 

i -r(i  - a ) u * / c u .  (9) 

3. The generating function P(z)  

As mentioned in the introduction, we treat uniformly multifurcating U M S .  Furthermore, 
we restrict ourselves to the case of equidistant energy levels (say distant by A),  and to 
temperature-assisted random walks. These assumptions are for computational con- 
venience only, since in the general case the analysis may be carried out along the same 
lines. Now the transition rates E,, between sites i and j depend on the lowest energy 
barrier mA which separates the sites via 

(10) -1b-m e - m l  h T =  
E , I  = T - ( R / b ) ” / T  

with R = exp( -A/  k T ) .  The P,( t )  fulfil the master equation 

where E , ,  = -Zl+,  E , , .  For P,(O) = a,(, the solution Po( t )  is [6]: 

n 

Po( t ) = b ’ -t ( b - 1 ) c b-  ”’ exp( -hmt/ 7 )  
m - l  

with 

, 1 -  I 

A , , , = ( ] - R / b )  R P + R ” .  (13) 
p = m  

For b = 2 and T = 1/ b the solution corresponds to that of [2]. In our  further treatment, 
we will consider an infinite tree, n+cc. Equation (12) then takes the form of a 
Weierstrass series [7]: 

x 

Po( r )  = ( b - 1 ) b-”‘ exp[ - R‘”( t / T)( b - R )/ ( b R  - R 11. (14) 
ni - I 

Note that Po( R t )  - bP,,( t ) ,  from which PI)( t )  - t with y = (In b ) k T / h  (i.e. equation 
(1 ) )  follows. 

To obtain the generating function P ( z )  of the walk we first need the Laplace 
transform of Po( 1 ) .  From equation ( 1 2 )  for an infinite U M S  one has: 

Now, leaving a U M S  site is an exponential process. Its rate is given from (10) by 
summing over UMS levels: 
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and is independent of the particular site. The corresponding waiting time distribution 
is given by equation (8).  Setting z = $(U) = A / (  U + A ) ,  i.e. U = A (  1 - z ) / z ,  we obtain 
from (5)  and (15) the generating function P ( z )  

X 

P ( z ) = ( b  - 1) b-"( 1 - z +  CzR")-'  (17) 
m = l  

with C = ( b  - R ) / (  bR - R) .  Expanding (17) as a series in z it follows: 
X 

= ( b - 1 )  b-"'(l- CR")" 
m = l  

x 

= ( b - 1 )  b-" exp(-nCR") 
* = I  

a special case of Po,,, = Po( A t )  for Poisson processes. The knowledge of P (  z )  enables 
us to determine S( z )  and to consider CTRW with broad waiting time distributions. This 
we proceed to show. 

4. The mean number of distinct sites visited 

We first show that relation (71, valid for regular lattices [ 113 also holds for UMS.  The 
central point in this derivation is the relation 

where F,," is the probability to reach site i for the first time in the mth step. Equation 
(19) states (besides the obvious initial condition) that in order to be in the nth step 
at i one has to arrive there either at the nth step or earlier, at m, followed by a return 
to i in n - m steps (whose probability is P,,,,-,). Equation (19) holds since the random 
walk is a homogeneous Markov process, invariant with respect to time-translation, 
and since event spaces corresponding to different first-time arrivals are disjoint sets. 

The same relation holds also for regularly multifurcating UMS, since all sites are 
equivalent. (On the other hand, in general for fractals the relation P,,.,-, = is 
only approximate.) Hence also for UMS:  

Due to translational invariance, for Bravais lattices one has P,,,,-, = P,-,,,-, - - Po,,-,,,. 

The course to equation (7)  is now straightforward [ l l ]  and  is left to the appendix. 
The final result is (A8) of the appendix, i.e. equation (7): 

(21) 
By expanding P ( z )  and  S ( z )  in series in z and by comparison term by term one can 
(using equation (17)) determine the S, to any desired accuracy [ 141. Here we proceed 
analytically, and determine from equations (14)-( 17) and (21) the qualitative behaviour 
of S(u) and S ( t ) .  Consider first the Poisson process, for which we already know 
(equation (14)) that PO( t )  - t - Y .  Laplace transformation gives as a leading term: 

(1 - z ) S ( z )  = [ ( l  - z )P (z ) ] - ' .  

for y < l  
constant for y > 1 
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as may be inferred either directly or from (15). For the latter one notices first from 
(13 )  that A, - R"'. Equation (15) then takes the form C",, b-"'/( u + R " ) ,  so that for 
U = 0 the series converges if and only if bR > 1, i.e. y >  1. Furthermore, for bR < 1 
one has for the integral J :  

as can be established using equation (3.311.9) of [15]. The sum in (15) and J have 
the same small-u behaviour, so that ( 2 2 )  follows. 

For the Poisson process z = A / (  U + A ) - 1 - U /  A, so that 1 - z - U /  A. Equation (21) 
implies, together with (22): 

from which in the time domain 

for y < l  
for y >  1 

follows 

Y < l  
y >  1. 

Since the random walk has a Poisson distribution of waiting times, n - A r ,  and hence 
S ,  - n ' for y < 1 and S,,  - n for y > 1. This agrees with the previous analyses for 
random walks on U M S  [4,5]. One may note that for y < 1 the relation 

S ( t ) -  l lPo ( t )  (26) 

also holds, which is the hallmark of compact exploration [4, 5 ,  8, 101. 

5. CTRW with broad waiting-time distributions 

In this section we present the behaviour of CTRW on U M S  where $ ( t )  - t - ' - " ( O <  (Y < I ) ,  
so that 1 -+(U) - U" (equation (9)). 

We start by considering the probability of being at the origin, P , ( t ) .  Use of (5) 
and (17) leads to: 

An argument similar to the one advanced in (23) shows that 

from which it follows 

For (Y < 1 and y < 1 the two coefficients combine multiplicatively in Po( t ) ,  i.e. the two 
processes subordinate [IO]. Remarkable is also the fact that for y >  1 the long-time 
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behaviour is dictated by the temporal disorder and that the energetic-disorder is no 
longer important. A similar finding holds for CTRW on fractals with d > 2 where for 
a < 1 the spectral dimension becomes an irrelevant parameter for the decay law at 
long times [lo].  

Let us now turn to the mean number of distinct sites visited. Similar to (5) one 
has for S( U )  under CTRW conditions: 

The Sn are as given after ( 2 5 ) ,  S, - n p ,  with ,B = min( 1, y ) .  Now [ 101 

f n P z n  = x e""' dx  = r ( p  + l)(-ln z ) - ' - '  
n --n I: 

so that, for 1 - $(U) - U *  
s ( ~ ) -  u u - - I u - o I P + I J -  - u - m f i - l  

i.e. S (  U )  - u - : ' ~ - '  for y < 1 and S( U )  - U-"-' for y > 1. Hence 

Again, S (  t )  shows subordination for y < 1. Furthermore relation (26), S( t )  - 1/ Po( t )  
is now obeyed for all y (i.e. for all temperatures). 

In  summary, we have used P ( z ) ,  the generating function for random walks on 
regularly multifurcating U M S  (equation (7)) to study the influence of broad distributions 
of waiting times. At low temperatures both the probability of being at the origin, Po( t ) ,  
as well as the mean number of distinct sites visited, S( t ) ,  show subordination. Findings 
on U M S  parallel those for fractals; moreover some relations, such as (7)  hold exactly 
for regular UMS.  
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Appendix. The relationship between P ( z )  and S(z) 

The starting point for the relationship between P ( z )  and S ( z )  is (20): 

Now we define the increment A,,, in newly visited sites at the mth step as being: 

A m  = c F,,", 
I t 0  

with A o =  1. Then S,, the mean number of distinct sites visited in n steps, is: 
n 

S , =  1 A,,,. 
m = O  
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Equations ( A l l  and (A2) give by summing over i # 0: 

where the requirement of conservation of probability was used. 

by z n  and sum over n, so that equation (A4) becomes: 
Now we can switch over to generating functions. For that we multiply both sides 

P ( z ) A i z ) = ( l - z ) - '  (A51 

where 

A ( z ) =  c a ,zm.  
m;O 

Similarly, from equation (A31 

( 1  - z ) S (  Z )  = A( Z )  

Thus the last equation together with equation iA5)  yield the sought relation 

(1 - z ) S ( z )  = [(l - z ) P  ( z ) ] -  ' 
which is written here in a symmetric way. 

1a8) 
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